

Dr. Joseph R. Guerci DARPA/SPO Deputy Director 3701 N. Fairfax Drive Arlington, VA 22203-1714

Tel: (703) 248-1511; Fax: (703) 741-0053

Email: JGuerci@darpa.mil

First Annual KASSPER Workshop April 3, 2002 Capitol Hilton 3701 N. Fairfax Drive Washington, D. C. 22201

When is There a Problem?

Extremely suboptimal radar performance can occur if one or more of the following occurs: (High false alarm rates and/or low P_d)

- Heterogeneous Clutter

 - Rapidly varying terrain
 Mountainous (rapid elevation/reflectivity variation)
 Rapid land cover variations (e.g., littoral)
- Dense "Target" Backgrounds
 - "Moving Clutter"
 - Military/civilian vehicles
- Large Discretes and "Spiky" Clutter
 - Urban clutter
 - Power lines, towers, steep mountainous terrain
- Range-Varying (Nonstationary) Clutter Loci
 - Bi/Multistatics
 - Nonlinear array geometries (e.g., circular arrays)
- Joint "Hot and Cold Clutter" Problem
 - Multipath terrain scattered interference

What are the Problems?

- Current systems implement highly restrictive adaptation techniques
 - Require environment to remain "stationary" and "homogeneous" during "adaptation" (e.g., CACFAR, STAP)
 - Significant performance degradation in "complex" interference environments
- Only suboptimal piecemeal "patches" to problem have been considered
 - No potential solutions exist that comprehensively address the totality of issues
- Fundamental shift in the basis for adaptation required

KASSPER Enabled by a Confluence of Emerging Technologies

High-Level KASSPER Processing Chain

Flight Tests Conducted Over Populated Regions

•Nature of program allowed for flight tests in "real-world" environments!

- L-band transmit frequency
- 20kW peak transmit power
- Variable PRF
 - 500 Hz. 2kHz. 7kHz
- LFM or gated-RF
- 0.8 microsecond range resolution
 - 120 m
- Typical compression ratio of 63
- 0.8 MHz receiver bandwidth
- 7.5 degree Tx beam or "blob" (3x) pattern for broad coverage

128 radiating elements total (32x4)

MCARM platform located east of Baltimore heading south, height = 10km Yellow dots show discretes (urban clutter) and road network

KASSPER Dramatically Improves P_D and SINR in Airborne Radar Flight Test

Information-Theoretic Interpretation

Bit Reduction (Predictive Coding)

Adaptive DOFs Reduction (Predictive Rank-Reduction)

Knowledge-Aided Interference Rejection

Direct use of environmental knowledge base for heterogeneous clutter rejection

Clutter Knowledge Base

Clutter Cell Returns

 $\{\boldsymbol{g}_i\}$

Clutter Steering Vectors $\{C_i\}$

$$R_{KA} = \sum \mathbf{g}_i^2 C_i C_i' + \mathbf{s}^2 I$$

Sum Over

Clutter Cells

Approved for Public Release. Distribution is unlimited.

Existing High Fidelity Clutter Modeling

DARPA MOUNTAIN TOP Performance Significantly Improved Using KASSPER

RSTER Radar

DTED/DFAD Based **Clutter Map**

IDPCA

Parameter	Value	Units
Antenna Gain	29	dBi
Transmit Power Peak/Average	100/6	kW
PRF	250-1500	Hz
Operating Frequency	400-500	MHz
Bandwidth	200	kHz
Beamwidth (Azimuth/Elevation)	6/9	degrees

Improved SINR Performance

-20 -10 1/SINRloss (dB)

Conventional vs. KASSPER HPEC **Processing**

Highly Parallel Systolic Array Implementation (Achieves 100's to 1000's of GFLOPS)

$$\mathbf{w} = R^{-1}\mathbf{s}$$

KASSPER HPEC Challenge: Optimizing adaptation by injecting environmental knowledge "intelligently" into the front-end signal flow

First Gen Real-Time KASSPER HPEC

"Look-Ahead" scheduling

- QR Factorization w/ Back substitution

Complex Memory Hierarchy

